Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(7): 072502, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427897

ABSTRACT

Using the fusion-evaporation reaction ^{106}Cd(^{58}Ni,4n)^{160}Os and the gas-filled recoil separator SHANS, two new isotopes _{76}^{160}Os and _{74}^{156}W have been identified. The α decay of ^{160}Os, measured with an α-particle energy of 7080(26) keV and a half-life of 201_{-37}^{+58} µs, is assigned to originate from the ground state. The daughter nucleus ^{156}W is a ß^{+} emitter with a half-life of 291_{-61}^{+86} ms. The newly measured α-decay data allow us to derive α-decay reduced widths (δ^{2}) for the N=84 isotones up to osmium (Z=76), which are found to decrease with increasing atomic number above Z=68. The reduction of δ^{2} is interpreted as evidence for the strengthening of the N=82 shell closure toward the proton drip line, supported by the increase of the neutron-shell gaps predicted in theoretical models.

2.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505957

ABSTRACT

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

3.
Phys Rev Lett ; 130(17): 172501, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172241

ABSTRACT

We report on the first proton-induced single proton- and neutron-removal reactions from the neutron-deficient ^{14}O nucleus with large Fermi-surface asymmetry S_{n}-S_{p}=18.6 MeV at ∼100 MeV/nucleon, a widely used energy regime for rare-isotope studies. The measured inclusive cross sections and parallel momentum distributions of the ^{13}N and ^{13}O residues are compared to the state-of-the-art reaction models, with nuclear structure inputs from many-body shell-model calculations. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively. These multiple reaction mechanisms should be considered in analyses of inclusive one-nucleon removal cross sections measured at intermediate energies for quantitative investigation of single-particle strengths and correlations in atomic nuclei.

4.
Phys Rev Lett ; 129(24): 242502, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563237

ABSTRACT

ß decay of proton-rich nuclei plays an important role in exploring isospin mixing. The ß decay of ^{26}P at the proton drip line is studied using double-sided silicon strip detectors operating in conjunction with high-purity germanium detectors. The T=2 isobaric analog state (IAS) at 13 055 keV and two new high-lying states at 13 380 and 11 912 keV in ^{26}Si are unambiguously identified through ß-delayed two-proton emission (ß2p). Angular correlations of two protons emitted from ^{26}Si excited states populated by ^{26}P ß decay are measured, which suggests that the two protons are emitted mainly sequentially. We report the first observation of a strongly isospin-mixed doublet that deexcites mainly via two-proton decay. The isospin mixing matrix element between the ^{26}Si IAS and the nearby 13 380-keV state is determined to be 130(21) keV, and this result represents the strongest mixing, highest excitation energy, and largest level spacing of a doublet ever observed in ß-decay experiments.

5.
Phys Rev Lett ; 126(15): 152502, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929212

ABSTRACT

A new α-emitting isotope ^{214}U, produced by the fusion-evaporation reaction ^{182}W(^{36}Ar,4n)^{214}U, was identified by employing the gas-filled recoil separator SHANS and the recoil-α correlation technique. More precise α-decay properties of even-even nuclei ^{216,218}U were also measured in the reactions of ^{40}Ar, ^{40}Ca beams with ^{180,182,184}W targets. By combining the experimental data, improved α-decay reduced widths δ^{2} for the even-even Po-Pu nuclei in the vicinity of the magic neutron number N=126 are deduced. Their systematic trends are discussed in terms of the N_{p}N_{n} scheme in order to study the influence of proton-neutron interaction on α decay in this region of nuclei. It is strikingly found that the reduced widths of ^{214,216}U are significantly enhanced by a factor of two as compared with the N_{p}N_{n} systematics for the 84≤Z≤90 and N<126 even-even nuclei. The abnormal enhancement is interpreted by the strong monopole interaction between the valence protons and neutrons occupying the π1f_{7/2} and ν1f_{5/2} spin-orbit partner orbits, which is supported by the large-scale shell model calculation.

6.
Phys Rev Lett ; 126(8): 082501, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33709737

ABSTRACT

A kinematically complete quasifree (p,pn) experiment in inverse kinematics was performed to study the structure of the Borromean nucleus ^{17}B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for 1s_{1/2} and 0d_{5/2} orbitals, and a surprisingly small percentage of 9(2)% was determined for 1s_{1/2}. Our finding of such a small 1s_{1/2} component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in ^{17}B. The present work gives the smallest s- or p-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of s or p orbitals is not a prerequisite for the occurrence of a neutron halo.

7.
Phys Rev Lett ; 127(26): 262502, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029460

ABSTRACT

^{18}Mg was observed, for the first time, by the invariant-mass reconstruction of ^{14}O+4p events. The ground-state decay energy and width are E_{T}=4.865(34) MeV and Γ=115(100) keV, respectively. The observed momentum correlations between the five particles are consistent with two sequential steps of prompt 2p decay passing through the ground state of ^{16}Ne. The invariant-mass spectrum also provides evidence for an excited state at an excitation energy of 1.84(14) MeV, which is likely the first excited 2^{+} state. As this energy exceeds that for the 2^{+} state in ^{20}Mg, this observation provides an argument for the demise of the N=8 shell closure in nuclei far from stability. However, in open systems this classical argument for shell strength is compromised by Thomas-Ehrman shifts.

8.
Phys Rev Lett ; 125(19): 192503, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33216609

ABSTRACT

ß-delayed one-proton emissions of ^{22}Si, the lightest nucleus with an isospin projection T_{z}=-3, are studied with a silicon array surrounded by high-purity germanium detectors. Properties of ß-decay branches and the reduced transition probabilities for the transitions to the low-lying states of ^{22}Al are determined. Compared to the mirror ß decay of ^{22}O, the largest value of mirror asymmetry in low-lying states by far, with δ=209(96), is found in the transition to the first 1^{+} excited state. Shell-model calculation with isospin-nonconserving forces, including the T=1, J=2, 3 interaction related to the s_{1/2} orbit that introduces explicitly the isospin-symmetry breaking force and describes the loosely bound nature of the wave functions of the s_{1/2} orbit, can reproduce the observed data well and consistently explain the observation that a large δ value occurs for the first but not for the second 1^{+} excited state of ^{22}Al. Our results, while supporting the proton-halo structure in ^{22}Al, might provide another means to identify halo nuclei.

9.
Phys Rev Lett ; 124(15): 152502, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357034

ABSTRACT

Detailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from ^{29}Ne/^{29}F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the ^{27}F^{(*)}+n and ^{26}F^{(*)}+2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with S_{n}(^{28}F)=-199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S_{n}(^{27}F)=1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of ^{28}F. Importantly, in the case of the ground state, the reconstructed ^{27}F+n momentum distribution following neutron removal from ^{29}F indicates that it arises mainly from the 1p_{3/2} neutron intruder configuration. This demonstrates that the island of inversion around N=20 includes ^{28}F, and most probably ^{29}F, and suggests that ^{28}O is not doubly magic.

10.
Phys Rev Lett ; 122(21): 212502, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31283301

ABSTRACT

The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.

11.
Genet Mol Res ; 15(2)2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27323116

ABSTRACT

RNA extraction from the nucleus pulposus of intervertebral discs has been extensively used in orthopedic studies. We compared two methods for extracting RNA from the nucleus pulposus: liquid nitrogen grinding and enzyme digestion. The RNA was detected by agarose gel electrophoresis, and the purity was evaluated by absorbance ratio using a spectrophotometer. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression was assayed by reverse transcription-polymerase chain reaction (RT-PCR). Thirty human lumbar intervertebral discs were used in this study. The liquid nitrogen-grinding method was used for RNA extraction from 15 samples, and the mean RNA concentration was 491.04 ± 44.16 ng/mL. The enzyme digestion method was used on 15 samples, and the mean RNA concentration was 898.42 ± 38.64 ng/mL. The statistical analysis revealed that there was a significant difference in concentration between the different methods. Apparent 28S, 18S, and 5S bands were detectable in RNA extracted using the enzyme digestion method, whereas no 28S or 18S bands were detected in RNA extracted using the liquid nitrogen-grinding method. The GAPDH band was visible, and no non-specific band was detected in the RT-PCR assay by the enzyme digestion method. Therefore, the enzyme digestion method is an efficient and easy method for RNA extraction from the nucleus pulposus of intervertebral discs for further intervertebral disc degeneration-related studies.


Subject(s)
Intervertebral Disc Degeneration/genetics , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , RNA/isolation & purification , Glyceraldehyde-3-Phosphate Dehydrogenases/biosynthesis , Humans , RNA/genetics
12.
Oncogene ; 28(7): 973-82, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19079338

ABSTRACT

Multiple endocrine neoplasia type 1 (MEN1) is a dominantly inherited tumor syndrome that results from the mutation of the MEN1 gene that encodes protein menin. Stable overexpression of MEN1 has been shown to partially suppress the Ras-mediated morphological changes of fibroblast cells. Little is known about the molecular mechanisms by which menin decreases the oncogenic effects on cell morphology and other phenotypes. Here we showed that ectopic expression of menin in pretumor beta-cells increases islet cell adhesion and reduces cell migration. Our further studies revealed that menin interacts with the scaffold protein, IQ motif containing GTPase activating protein 1 (IQGAP1), reduces GTP-Rac1 interaction with IQGAP1 but increases epithelial cadherin (E-cadherin)/beta-catenin interaction with IQGAP1. Consistent with an essential role for menin in regulating beta-cell adhesion in vivo, accumulations of beta-catenin and E-cadherin are reduced at cell junctions in the islets from Men1-excised mice. Together, these results define a novel menin-IQGAP1 pathway that controls cell migration and cell-cell adhesion in endocrine cells.


Subject(s)
Cell Adhesion/physiology , Insulin-Secreting Cells/metabolism , Intercellular Junctions/metabolism , Proto-Oncogene Proteins/metabolism , ras GTPase-Activating Proteins/metabolism , Actins/metabolism , Animals , Cadherins/metabolism , Cell Membrane/metabolism , Cell Movement/physiology , Cells, Cultured , Genes, Tumor Suppressor , Guanosine Triphosphate/metabolism , Humans , Mice , Microscopy, Fluorescence , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , beta Catenin/metabolism , rac1 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/antagonists & inhibitors , ras GTPase-Activating Proteins/genetics
13.
Article in Chinese | MEDLINE | ID: mdl-12571999

ABSTRACT

OBJECTIVE: To explore the sex difference in proteins between male and female adult worm of Schistosoma japonicum. METHODS: Two-electrophoresis was used to analyse the difference of protein between the male and female adult worm of S. japonicum (Chinese strain). RESULTS: Two-dimensional electrophoresis analysis revealed that at the site of 43 kDa and an isoelectric point (pI) of 5.60-5.90 the male worm exhibited a band carrying a number of spots and dots, being longer and wider than that exhibited by the female worm. The female worm exhibited 7 specific dots. CONCLUSION: The sex differences in proteins between male and female adult worms of S. japonicum are significant.


Subject(s)
Helminth Proteins/analysis , Schistosoma japonicum/chemistry , Animals , Electrophoresis , Female , Male , Sex Factors
15.
Proc Natl Acad Sci U S A ; 97(26): 14307-10, 2000 Dec 19.
Article in English | MEDLINE | ID: mdl-11114191

ABSTRACT

Structures of yeast Mediator complex, of a related complex from mouse cells and of thyroid hormone receptor-associated protein complex from human cells have been determined by three-dimensional reconstruction from electron micrographs of single particles. All three complexes show a division in two parts, a "head" domain and a combined "middle-tail" domain. The head domains of the three complexes appear most similar and interact most closely with RNA polymerase II. The middle-tail domains show the greatest structural divergence and, in the case of the tail domain, may not interact with polymerase at all. Consistent with this structural divergence, analysis of a yeast Mediator mutant localizes subunits that are not conserved between yeast and mammalian cells to the tail domain. Biochemically defined Rgr1 and Srb4 modules of yeast Mediator are then assigned to the middle and head domains.


Subject(s)
Nuclear Proteins/ultrastructure , Receptors, Thyroid Hormone/metabolism , Trans-Activators , Animals , HeLa Cells , Humans , Mediator Complex , Mice , Nuclear Proteins/chemistry , Protein Conformation , Saccharomyces cerevisiae/chemistry , Transcription Factors
16.
Plant Mol Biol ; 43(4): 459-71, 2000 Jul.
Article in English | MEDLINE | ID: mdl-11052198

ABSTRACT

Based on phylogeny of DNA-binding domains and the organization of hydrophobic repeats, two families of heat shock transcription factors (HSFs) exist in plants. Class A HSFs are involved in the activation of the heat shock response, but the role of class B HSFs is not clear. When transcriptional activities of full-length HSFs were monitored in tobacco protoplasts, no class B HSFs from soybean or Arabidopsis showed activity under control or heat stress conditions. Additional assays confirmed the finding that the class B HSFs lacked the capacity to activate transcription. Fusion of a heterologous activation domain from human HSF1 (AD2) to the C-terminus of GmHSFB1-34 gave no evidence of synergistic enhancement of AD2 activity, which would be expected if weak activation domains were present. Furthermore, activity of AtHSFB1-4 (class B) was not rescued by coexpression with AtHSFA4-21 (class A) indicating that the class A HSF was not able to provide a missing function required for class B activity. The transcriptional activation potential of Arabidopsis AtHSFA4-21 was mapped primarily to a 39 amino acid fragment in the C-terminus enriched in bulky hydrophobic and acidic residues. Deletion mutagenesis of the C-terminal activator regions of tomato and Arabidopsis HSFs indicated that these plant HSFs lack heat-inducible regulatory regions analogous to those of mammalian HSF1. These findings suggest that heat shock regulation in plants may differ from metazoans by partitioning negative and positive functional domains onto separate HSF proteins. Class A HSFs are primarily responsible for stress-inducible activation of heat shock genes whereas some of the inert class B HSFs may be specialized for repression, or down-regulation, of the heat shock response.


Subject(s)
DNA-Binding Proteins/genetics , Plants/genetics , Amino Acid Sequence , Arabidopsis/genetics , Binding Sites , DNA-Binding Proteins/classification , Glucuronidase/genetics , Glucuronidase/metabolism , Heat Shock Transcription Factors , Molecular Sequence Data , Plants, Toxic , Protoplasts/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Glycine max/genetics , Nicotiana/genetics , Trans-Activators , Transcription Factors , Transcription, Genetic , Transformation, Genetic
17.
Cell Stress Chaperones ; 5(3): 229-42, 2000 Jul.
Article in English | MEDLINE | ID: mdl-11005381

ABSTRACT

Protein-protein interactions between human heat shock transcription factor 1 (hHSF1) and general transcription factors TFIIA-gamma, TFIIB, TBP, TAF(II)32, and TAF(II)55 and positive coactivator PC4 were characterized in order to identify potential targets of contact in the transcriptional preinitiation complex. These contacts represent one of the final steps in the signal transfer of heat stress to the transcriptional apparatus. TATA-binding protein (TBP) and transcription factor IIB (TFIIB) were identified as major targets for HSF1 transcriptional activation domains AD1 and AD2 based on in vitro interaction assays. TBP showed affinity for AD2 and a fragment containing AD1, while the core domain of TFIIB interacted primarily with the AD1 fragment. Interactions were also detected between full-length HSF1 and the small subunit (gamma) of TFIIA. PC4 interacted weakly with HSF2 and showed even less affinity for HSF1. Coimmunoprecipitation of transiently expressed TBP in HeLa cells demonstrated that HSF1 AD2 and AD1+AD2 are able to bind TBP in vivo. Assays based on transcriptional interference confirmed predictions that both TBP and TFIIB can interact with HSF1 activation domains in HeLa cells. The negative regulatory region (NR) of HSF1 did not interact with any general factors tested in vitro but did bind TFIID in nuclear extracts through contacts that probably involve TATA associated proteins (TAFs). These results suggest a model for transcriptional regulation by HSF1 that involves a shift between formation of dysfunctional TFIID complexes with the NR and transcriptionally competent complexes with the C-terminal activation domains.


Subject(s)
DNA-Binding Proteins/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response , Transcription Factors/metabolism , Transcriptional Activation/genetics , Blotting, Western , Cell Nucleus/metabolism , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/genetics , Genes, Reporter , HeLa Cells , Heat Shock Transcription Factors , Heat-Shock Proteins/genetics , Humans , Immediate-Early Proteins , Membrane Proteins , Models, Genetic , Precipitin Tests , Protein Binding , Recombinant Fusion Proteins/metabolism , Regulatory Sequences, Nucleic Acid , Repressor Proteins/genetics , Repressor Proteins/metabolism , TATA-Box Binding Protein , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factor TFIIA , Transcription Factor TFIIB , Transcription Factor TFIID , Transcription Factors/genetics , Transcription Factors, TFII/metabolism , Transfection
18.
Mol Cell ; 5(4): 683-93, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10882104

ABSTRACT

The TRAP220 component of the TRAP/SMCC complex, a mammalian homologof the yeast Mediator that shows diverse coactivation functions, interacts directly with nuclear receptors. Ablation of the murine Trap220 gene revealed that null mutants die during an early gestational stage with heart failure and exhibit impaired neuronal development with extensive apoptosis. Primary embryonic fibroblasts derived from null mutants show an impaired cell cycle regulation and a prominent decrease of thyroid hormone receptor function that is restored by ectopic TRAP220 but no defect in activation by Gal4-RARalpha/RXRalpha, p53, or VP16. Moreover, haploinsufficient animals show growth retardation, pituitary hypothyroidism, and widely impaired transcription in certain organs. These results indicate that TRAP220 is essential for a wide range of physiological processes but also that it has gene- and activator-selective functions.


Subject(s)
Carrier Proteins/metabolism , Pituitary Gland/embryology , Receptors, Thyroid Hormone/metabolism , Thyroid Gland/embryology , Thyroid Hormones/metabolism , Transcription Factors , Animals , Carrier Proteins/genetics , Embryonic and Fetal Development , Fibroblasts/physiology , Genes, Lethal , Heart Defects, Congenital , Liver/embryology , Lung/embryology , Mediator Complex Subunit 1 , Mice , Mice, Knockout , Nervous System Malformations , Pituitary Gland/metabolism , Placenta/embryology , Thyroid Gland/metabolism , Trans-Activators/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
19.
Mol Cell ; 3(3): 361-70, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10198638

ABSTRACT

The human thyroid hormone receptor-associated protein (TRAP) complex, an earlier described coactivator for nuclear receptors, and an SRB- and MED-containing cofactor complex (SMCC) that mediates activation by Gal4-p53 are shown to be virtually the same with respect to specific polypeptide subunits, coactivator functions, and mechanisms of action (activator interactions). In parallel with ligand-dependent interactions of nuclear receptors with the TRAP220 subunit, p53 and VP16 activation domains interact directly with a newly cloned TRAP80 subunit. These results indicate novel pathways for the function of nuclear receptors and other activators (p53 and VP16) through a common coactivator complex that is likely to target RNA polymerase II. Identification of the TRAP230 subunit as a previously predicted gene product also suggests a coactivator-related transcription defect in certain disease states.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Fungal Proteins/metabolism , Receptors, Thyroid Hormone/metabolism , Saccharomyces cerevisiae Proteins , Trans-Activators/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Blotting, Northern , Blotting, Western , Carrier Proteins/chemistry , Cloning, Molecular , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression Regulation , HeLa Cells , Herpes Simplex Virus Protein Vmw65/metabolism , Humans , Mediator Complex , Mediator Complex Subunit 1 , Molecular Sequence Data , Protein Binding , RNA Polymerase II/metabolism , Receptors, Calcitriol/metabolism , Response Elements/genetics , Trans-Activators/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Tumor Suppressor Protein p53/metabolism
20.
Mol Cell ; 3(1): 97-108, 1999 Jan.
Article in English | MEDLINE | ID: mdl-10024883

ABSTRACT

A novel human complex that can either repress activator-dependent transcription mediated by PC4, or, at limiting TFIIH, act synergistically with PC4 to enhance activator-dependent transcription has been purified. This complex contains homologs of a subset of yeast mediator/holoenzyme components (including SRB7, SRB10, SRB11, MED6, and RGR1), homologs of other yeast transcriptional regulatory factors (SOH1 and NUT2), and, significantly, some components (TRAP220, TRAP170/hRGR1, and TRAP100) of a human thyroid hormone receptor-associated coactivator complex. The complex shows direct activator interactions but, unlike yeast mediator, can act independently of the RNA polymerase II CTD. These findings demonstrate both positive and negative functional capabilities for the human complex, emphasize novel (CTD-independent) regulatory mechanisms, and link the complex to other human coactivator complexes.


Subject(s)
Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins , Transcription Factors, TFII/genetics , Transcription Factors , Cloning, Molecular , Fungal Proteins/chemistry , Fungal Proteins/genetics , Humans , Immediate-Early Proteins , Mediator Complex , Membrane Proteins , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Repressor Proteins/chemistry , Saccharomyces cerevisiae/genetics , Sequence Analysis , Sequence Homology, Amino Acid , Trans-Activators/genetics , Transcription Factors, TFII/chemistry , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...